ANALÍTICA TEXTUAL

ANALÍTICA TEXTUAL

INTRODUCCIÓN A LA CIENCIA Y APLICACIÓN DEL ANÁLISIS DE INFORMACIÓN NO ESTRUCTURA

ATKINSON ABUTRIDY, JOHN

24,80 €
IVA inclós
Disponibilitat immediata
Editorial:
MARCOMBO, S.A.
Any d'edició:
2023
Matèria
Informàtica
ISBN:
978-84-267-3613-0
Pàgines:
256
Enquadernació:
Rústica
24,80 €
IVA inclós
Disponibilitat immediata

1 ANALÍTICA TEXTUAL ......................................................................................... 25
1.1 INTRODUCCIÓN .................................................................................... 25
1.2 MINERÍA DE TEXTOS Y ANALÍTICA TEXTUAL ......................................... 28
1.3 TAREAS Y APLICACIONES ...................................................................... 30
1.4 EL PROCESO DE LA ANALÍTICA TEXTUAL ............................................... 33
1.5 RESUMEN .............................................................................................. 36
1.6 PREGUNTAS .......................................................................................... 37
2 PROCESAMIENTO DEL LENGUAJE NATURAL .................................................... 39
2.1 INTRODUCCIÓN .................................................................................... 39
2.2 PROCESAMIENTO DEL LENGUAJE NATURAL ......................................... 41
2.3 NIVELES Y TAREAS EN NLP .................................................................... 42
2.3.1 Fonología .............................................................................................. 43
2.3.2 Morfología ............................................................................................ 44
2.3.3 Léxico .................................................................................................... 45
2.3.4 Sintaxis .................................................................................................. 51
2.3.5 Semántica ............................................................................................. 55
2.3.6 Razonamiento y pragmática ................................................................. 60
2.4 RESUMEN .............................................................................................. 60
2.5 EJERCICIOS ............................................................................................ 62
2.5.1 Análisis morfológico ............................................................................. 62
2.5.2 Análisis léxico ........................................................................................ 66
2.5.3 Análisis sintáctico ................................................................................. 68
3 EXTRACCIÓN DE INFORMACIÓN ....................................................................... 71
3.1 INTRODUCCIÓN .................................................................................... 71
3.2 EXTRACCIÓN DE INFORMACIÓN BASADA EN REGLAS .......................... 75
3.3 EXTRACCIÓN DE ENTIDADES NOMBRADAS .......................................... 76
3.3.1 Modelos de N-gramas .......................................................................... 78
3.4 EXTRACCIÓN DE RELACIONES ............................................................... 81
3.5 EVALUACIÓN ......................................................................................... 86
3.6 RESUMEN .............................................................................................. 88
3.7 EJERCICIOS ............................................................................................ 90
3.7.1 Extracción vía expresiones regulares ................................................... 90
3.7.2 Reconocimiento de entidades nombradas (NER) ................................. 94
4 REPRESENTACIÓN DE DOCUMENTOS .............................................................. 97
4.1 INTRODUCCIÓN .................................................................................... 97
4.2 INDEXACIÓN DE DOCUMENTOS ........................................................... 99
4.3 MODELOS DE ESPACIO VECTORIAL .................................................... 101
4.3.1 Modelo de representación booleana ................................................. 102
4.3.2 Modelo de frecuencia de términos .................................................... 103
4.3.3 Modelo de frecuencia inversa de documentos .................................. 104
4.4 RESUMEN ........................................................................................... 106
4.5 EJERCICIOS .......................................................................................... 107
4.5.1 Modelo de representación TFxIDF ..................................................... 107
5 ANÁLISIS DE REGLAS DE ASOCIACIÓN ............................................................ 115
5.1 INTRODUCCIÓN .................................................................................. 115
5.2 PATRONES DE ASOCIACIÓN ................................................................ 116
5.3 EVALUACIÓN ...................................................................................... 118
5.3.1 Support ............................................................................................... 118
5.3.2 Confidence ......................................................................................... 119
5.3.3 Lift ....................................................................................................... 119
5.4 GENERACIÓN DE REGLAS DE ASOCIACIÓN ......................................... 120
5.5 RESUMEN ........................................................................................... 124
5.6 EJERCICIOS .......................................................................................... 126
5.6.1 Extracción de reglas de asociación ..................................................... 126
6 ANÁLISIS SEMÁNTICO BASADO EN CORPUS .................................................. 131
6.1 INTRODUCCIÓN .................................................................................. 131
6.2 ANÁLISIS BASADO EN CORPUS ........................................................... 133
6.3 ANÁLISIS SEMÁNTICO LATENTE ......................................................... 135
6.3.1 Generación de vectores con LSA ........................................................ 136
6.4 WORD2VEC ......................................................................................... 140
6.4.1 Aprendizaje de embeddings en CBOW ............................................... 143
6.4.2 Predicción e interpretación de embeddings ...................................... 146
6.5 RESUMEN ........................................................................................... 148
6.6 EJERCICIOS .......................................................................................... 149
6.6.1 Análisis semántico latente (LSA) ......................................................... 149
6.6.2 Modelo de Word embedding del tipo Word2Vec .............................. 156
7 AGRUPACIÓN DE DOCUMENTOS ................................................................... 161
7.1 INTRODUCCIÓN .................................................................................. 161
7.2 CLUSTERING DE DOCUMENTOS .......................................................... 163
7.3 CLUSTERING K-MEANS ........................................................................ 169
7.4 MAPAS AUTOORGANIZATIVOS ........................................................... 172
7.4.1 Aprendizaje de mapas topológicos ..................................................... 174
7.5 RESUMEN ............................................................................................ 178
7.6 EJERCICIOS .......................................................................................... 179
7.6.1 Clustering via K-means ....................................................................... 179
7.6.2 Clustering vía mapas autoorganizativos ............................................. 185
8 MODELAMIENTO DE TÓPICOS ........................................................................ 188
8.1 INTRODUCCIÓN .................................................................................. 189
8.2 MODELAMIENTO DE TÓPICOS ............................................................ 191
8.3 LATENT DIRICHLET ALLOCATION ........................................................ 193
8.4 EVALUACIÓN ....................................................................................... 200
8.5 RESUMEN ............................................................................................ 202
8.6 EJERCICIOS .......................................................................................... 203
8.6.1 Modelamiento de tópicos con LDA .................................................... 203
9 CATEGORIZACIÓN DE DOCUMENTOS ............................................................. 209
9.1 INTRODUCCIÓN .................................................................................. 209
9.2 MODELOS DE CATEGORIZACIÓN ........................................................ 211
9.3 CLASIFICACIÓN BAYESIANA ................................................................ 214
9.4 CATEGORIZACIÓN POR MÁXIMA ENTROPÍA ...................................... 218
9.5 EVALUACIÓN ....................................................................................... 223
9.6 RESUMEN ............................................................................................ 225
9.7 EJERCICIOS .......................................................................................... 227
9.7.1 Categorización con Naïve Bayes ......................................................... 227
9.7.2 Categorización con Máxima Entropía ................................................. 232
10 CONCLUSIONES ................................................................................................. 239
Bibliografía ............................................................................................................. 244
Glosario .................................................................................................................. 250
Índice onomástico .................................................................................................. 253

Si desea obtener o entender sus propios datos textuales para descubrir y detectar automáticamente conocimiento valioso para su empresa, ha llegado al libro indicado. En él se proporciona una introducción a la ciencia y a las aplicaciones de la analítica textual o minería de textos (text mining) que le permitirá examinar fuentes de información no estructurada textual electrónica. La ciencia de la minería de textos es capaz de identificar información relevante y descubrir patrones ocultos desde grandes conjuntos de datos de naturaleza textual. Estos descubrimientos pueden convertirse en una forma estructurada que analizar e integrar en otro tipo de sistemas tradicionales de apoyo en la toma de decisiones (por ejemplo, en la inteligencia de negocios, en las bases de datos relacionales y en el data warehouses). Las aplicaciones de la minería de textos o analítica textual son prácticamente transversales en los ámbitos industriales, comerciales, científicos y públicos, por lo que este libro se convertirá en una herramienta clave para la toma de decisiones. Analítica textual se compone de 10 capítulos que combinan aspectos básicos teóricos de diferentes modelos y métodos computacionales, con ejercicios prácticos paso a paso a través del lenguaje de programación Python. Asimismo, esta obra revisa: ' Los fundamentos de la analítica textual: el procesamiento del lenguaje natural y la representación de documentos. ' Las diferentes tareas que se pueden realizar: la extracción de información, el descubrimiento de asociaciones, el análisis semántico, el clustering de documentos, el análisis de tópicos y la categorización de textos. Gracias a esta lectura, entenderá los paradigmas y los métodos computacionales para desarrollar aplicaciones que analicen automáticamente la información textual o los documentos, y descubrirá patrones novedosos sobre cómo mejorar los procesos en su organización.

Articles relacionats

  • MINECRAFT MINICONSTRUCCIONES ALUCINANTES
    MOJANG AB
    DESCUBRE TU MINECRAFT:  INSPÍRATE Y CONSTRUYE¡Embárcate en otra miniaventura! Construye más de 20 miniproyectos nuevos en Minecraft, desde patobarcos de recreo y casas lunares a trenes de vapor o camiones de bomberos. ¡Incluso un ovni que abduce vacas!Con este libro, lleno de ilustraciones explicativas, instrucciones paso a paso y muchos consejos, podrás crear un sinfín de cons...
    Disponibilitat immediata

    16,90 €

  • MENTALIDAD INHACKEABLE
    APERADOR, MARÍA
    Una de las mayores expertas en ciberseguridad de las redes nos desvela los grandes secretos para evitar la manipulación y la estafa en la era digital ¿Alguna vez te has sentido vulnerable ante los riesgos del mundo digital? ¿Te has preguntado si es posible estar a salvo de estafas, ciberataques y fake news? ¿Cómo podemos protegernos? La realidad es que vivimos en una era en l...
    Disponibilitat immediata

    21,90 €

  • ASÍ SE SOMETE A UNA SOCIEDAD
    ESPAÑA, MAR
    EL LIBRO QUE TODOS DEBERÍAMOS LEER «Muy recomendable para encontrar el equilibrio en este mundo digital».Nazareth Castellanos, autora de Neurociencia del cuerpo «Imprescindible para conocer el entramado del modelo de negocio que más impacto habrá tenido en la historia de la humanidad sobre el cerebro de nuestros hijos».Catherine L'Ecuyer, autora del best seller Educar en el aso...
    Disponibilitat immediata

    22,90 €

  • FRENAR A SILICON VALLEY
    MARCUS, GARY
    Elon Musk, Mark Zuckerberg y Jeff Bezos se disputan el lugar del hombre más rico del mundo desde hace años. Compañías como Meta, Google, Amazon han alcanzado un valor de mercado que supera el PIB de numerosos países y manejan los datos personales y oficiales de millones de ciudadanos, empresas y administraciones. Es una concentración de poder única en la historia que representa...
    Disponibilitat immediata

    22,90 €

  • ENTRE EL PARADIS I L'APOCALIPSI
    SALA I MARTÍN, XAVIER
    Una lectura apassionant per descobrir totes les respostes als reptes de la intel·ligència artificial. Què és la intel·ligència artificial? Ens obrirà les portes d'un paradís on els ordinadors ens faran la vida més fàcil? O acabarà amb el món que coneixem? Les idees científiques, tecnològiques i socials són el motor del progrés de la humanitat, com s'explica a De la sabana a Mar...
    Disponibilitat inmediata

    24,90 €

  • DOMINA CHATGPT EN 3 DÍAS Y APROVECHA TODO SU POTENCIAL - 2.ª EDICIÓN
    TAPIAS CANTOS, PABLO
    ¿Cómo puede la Inteligencia Artificial revolucionar tu vida? ChatGPT es una herramienta pionera capaz de liberar tu creatividad, agilizar tareas y elevar tu productividad en los ámbitos personal y profesional. Si quieres descubrir cómo ChatGPT puede mejorar tu forma de trabajar, aprender y crear, has llegado al libro indicado. Con esta segunda edición, lograrás comprender y apr...
    Disponibilitat immediata

    14,80 €